direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22⋊C4×F5, D10⋊C42, (C2×C10)⋊C42, C2.2(D4×F5), D5.2(C4×D4), C10.5(C4×D4), C22⋊F5⋊3C4, (C2×F5).8D4, C22⋊2(C4×F5), (C22×F5)⋊2C4, C23.D5⋊8C4, D10⋊C4⋊3C4, D10.59(C2×D4), C10.8(C2×C42), (C23×F5).1C2, C23.27(C2×F5), D10.3Q8⋊7C2, D10.42(C4○D4), D10.29(C22×C4), C22.35(C22×F5), D5.2(C42⋊C2), (C23×D5).83C22, (C22×F5).22C22, (C22×D5).268C23, (C2×C4×F5)⋊7C2, C5⋊1(C4×C22⋊C4), (C2×C4)⋊7(C2×F5), (C2×C20)⋊9(C2×C4), C2.10(C2×C4×F5), (C2×F5)⋊1(C2×C4), (C5×C22⋊C4)⋊6C4, (D5×C22⋊C4).7C2, D5.1(C2×C22⋊C4), (C2×C22⋊F5).3C2, (C2×Dic5)⋊14(C2×C4), (C2×C4×D5).288C22, (C22×C10).19(C2×C4), (C2×C10).36(C22×C4), (C22×D5).43(C2×C4), SmallGroup(320,1036)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22⋊C4×F5
G = < a,b,c,d,e | a2=b2=c4=d5=e4=1, cac-1=ab=ba, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 1018 in 258 conjugacy classes, 84 normal (24 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, D5, D5, C10, C10, C10, C42, C22⋊C4, C22⋊C4, C22×C4, C24, Dic5, C20, F5, F5, D10, D10, D10, C2×C10, C2×C10, C2×C10, C2.C42, C2×C42, C2×C22⋊C4, C23×C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C22×D5, C22×D5, C22×C10, C4×C22⋊C4, D10⋊C4, C23.D5, C5×C22⋊C4, C4×F5, C22⋊F5, C2×C4×D5, C22×F5, C22×F5, C22×F5, C23×D5, D10.3Q8, D5×C22⋊C4, C2×C4×F5, C2×C22⋊F5, C23×F5, C22⋊C4×F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C42, C22⋊C4, C22×C4, C2×D4, C4○D4, F5, C2×C42, C2×C22⋊C4, C42⋊C2, C4×D4, C2×F5, C4×C22⋊C4, C4×F5, C22×F5, C2×C4×F5, D4×F5, C22⋊C4×F5
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 11)(2 13 5 14)(3 15 4 12)(6 16)(7 18 10 19)(8 20 9 17)(21 31)(22 33 25 34)(23 35 24 32)(26 36)(27 38 30 39)(28 40 29 37)
G:=sub<Sym(40)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,11)(2,13,5,14)(3,15,4,12)(6,16)(7,18,10,19)(8,20,9,17)(21,31)(22,33,25,34)(23,35,24,32)(26,36)(27,38,30,39)(28,40,29,37)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,11)(2,13,5,14)(3,15,4,12)(6,16)(7,18,10,19)(8,20,9,17)(21,31)(22,33,25,34)(23,35,24,32)(26,36)(27,38,30,39)(28,40,29,37) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,11),(2,13,5,14),(3,15,4,12),(6,16),(7,18,10,19),(8,20,9,17),(21,31),(22,33,25,34),(23,35,24,32),(26,36),(27,38,30,39),(28,40,29,37)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 4M | ··· | 4AB | 5 | 10A | 10B | 10C | 10D | 10E | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 10 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 10 | ··· | 10 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C4 | D4 | C4○D4 | F5 | C2×F5 | C2×F5 | C4×F5 | D4×F5 |
kernel | C22⋊C4×F5 | D10.3Q8 | D5×C22⋊C4 | C2×C4×F5 | C2×C22⋊F5 | C23×F5 | D10⋊C4 | C23.D5 | C5×C22⋊C4 | C22⋊F5 | C22×F5 | C2×F5 | D10 | C22⋊C4 | C2×C4 | C23 | C22 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 4 | 2 | 2 | 8 | 8 | 4 | 4 | 1 | 2 | 1 | 4 | 2 |
Matrix representation of C22⋊C4×F5 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 40 | 40 | 40 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 40 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 40 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,40,0,0,0,0,0,0,0,40,0] >;
C22⋊C4×F5 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4\times F_5
% in TeX
G:=Group("C2^2:C4xF5");
// GroupNames label
G:=SmallGroup(320,1036);
// by ID
G=gap.SmallGroup(320,1036);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,387,100,6278,1595]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=e^4=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations